273 research outputs found

    Hybrid MOS and Single-Electron Transistor Architectures towards Arithmetic Applications

    Get PDF
    Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and Single-Electron Transistor (SET) hybrid architectures, which combine the merits of both MOSFET and SET, promise to be a practical implementation for nanometer-scale circuit design. In this thesis, we design arithmetic circuits, including adders and multipliers, using SET/MOS hybrid architectures with the goal of reducing circuit area and power dissipation and improving circuit reliability. Thanks to the Coulomb blockade oscillation characteristic of SET, the design of SET/MOS hybrid adders becomes very simple, and requires only a few transistors by using the proposed schemes of multiple-valued logic (MVL), phase modulation, and frequency modulation. The phase and frequency modulation schemes are also utilized for the design of multipliers. Two types of SET/MOS hybrid multipliers are presented in this thesis. One is the binary tree multiplier which adopts conventional tree structures with multi-input counters (or compressors) implemented with the phase modulation scheme. Compared to conventional CMOS tree multipliers, the area and power dissipation of the proposed multiplier are reduced by half. The other is the frequency modulated multiplier following a novel design methodology where the information is processed in the frequency domain. In this context, we explore the implicit frequency properties of SET, including both frequency gain and frequency mixing. The major merits of this type of multiplier include: a) simplicity of circuit structure, and b) high immunity against background charges within SET islands. Background charges are mainly induced by defects or impurities located within the oxide barriers, and cannot be entirely removed by today\u27s technology. Since these random charges deteriorate the circuit reliability, we investigate different circuit solutions, such as feedback structure and frequency modulation, in order to counteract this problem. The feedback represents an error detection and correction mechanism which offsets the background charge effect by applying an appropriate voltage through an additional gate of SET. The frequency modulation, on the other hand, exploits the fact that background charges only shift the phase of Coulomb blockade oscillation without changing its amplitude and periodicity. Therefore, SET/MOS hybrid adders and multipliers using the frequency modulation scheme exhibit the high immunity against these undesired charges

    Antibody-drug conjugates in urinary tumors: clinical application, challenge, and perspectives

    Get PDF
    Urinary tumors primarily consist of kidney, urothelial, and prostate malignancies, which pose significant treatment challenges, particularly in advanced stages. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic approach, combining monoclonal antibody specificity with cytotoxic chemotherapeutic payloads. This review highlights recent advancements, opportunities, and challenges in ADC application for urinary tumors. We discuss the FDA-approved ADCs and other novel ADCs under investigation, emphasizing their potential to improve patient outcomes. Furthermore, we explore strategies to address challenges, such as toxicity management, predictive biomarker identification, and resistance mechanisms. Additionally, we examine the integration of ADCs with other treatment modalities, including immune checkpoint inhibitors, targeted therapies, and radiation therapy. By addressing these challenges and exploring innovative approaches, the development of ADCs may significantly enhance therapeutic options and outcomes for patients with advanced urinary tumor

    The Magnetic Memory Effect of Ferromagnetic Materials in the Process of Stress-Magnetism Coupling

    Get PDF
    Ferromagnetic materials can produce the magnetic memory effect under stress. This provides a practical method to measure stress concentration. The relation between stress and magnetic characteristic is analyzed through energy balance theory. Force-magnetism coupling process of Fe-C crystal system is simulated by CASTEP software which is based on first principle. Electron band structure, electron density of states, and atomic magnetic moment in the process of force-magnetism coupling process are calculated. Experimental investigation of the magnetic memory effect of ferromagnetic material under different stresses has been undertaken in X52 pipeline. The results show that the magnetic characteristic of ferromagnetic material weakens under stress, and the magnetic memory signals intensity linearly decreases with the increasing stress. When material yields, the variation character of magnetic memory signals suddenly changes and the inflection points of the stress-B curves emerge. Experimental investigation is in agreement with the theoretical analysis

    An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration

    Get PDF
    Antibody-based cancer immune therapy has attracted lots of research interest in recent years; however, it is greatly limited by the easy distribution and burst release of antibodies. In addition, after the clearance of the tissue, healthy tissue regeneration is another challenge for cancer treatment. Herein, we have developed a specific immunological tissue engineering scaffold using the agonistic mouse anti-human CD40 antibody (CD40mAb) incorporated into poly(l-lactide) (PLLA) electrospun fibers through the dopamine (PDA) motif (PLLA-PDA-CD40mAb). CD40mAb is successfully incorporated onto the surface of the electrospun fibrous scaffold, which is proved by immunofluorescence staining, and the PLLA-PDA-CD40mAb scaffold has an anti-tumor effect by locally releasing CD40mAb. Therefore, this immunological electrospun scaffold has very good potential to be developed as a powerful tool for localized tumor treatment, and this is the first to be reported in this area.Peer reviewe

    The Thawing Characteristic of Frozen Tofu under High-Voltage Alternating Electric Field

    Get PDF
    To systematically and comprehensively investigate the high voltage alternating electric field (HVAEF) thawing processing, we investigated the high-voltage electric field thawing characteristic of the frozen tofu at different voltages for alternating current (AC). The thawing time, thawing loss of frozen tofu, and specific energy consumption (SEC) of HVEF system were measured. Seven different mathematical models were then compared to simulate thawing time curves based on root mean square error, reduced mean square of deviation, and modeling efficiency. The results showed that the thawing rate of frozen tofu was notably greater in the high-voltage electric field system when compared to control. Both Linear and Quadratic models were the best mathematical models. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the HVAEF thawing properties of frozen tofu

    pH-sensitive charge-conversion cinnamaldehyde polymeric prodrug micelles for effective targeted chemotherapy of osteosarcoma in vitro

    Get PDF
    Introduction: Chemotherapy is a common strategy for the treatment of osteosarcoma. However, its therapeutic efficacy is not ideal due to the low targeting, lowbioavailability, and high toxicity of chemotherapy drugs. Nanoparticles can improve the residence time of drugs at tumor sites through targeted delivery. This new technology can reduce the risk to patients and improve survival rates. To achieve this goal, we developed a pHsensitive charge-conversion polymeric micelle [mPEG-b-P(C7-co-CA) micelles] for osteosarcoma-targeted delivery of cinnamaldehyde (CA).Methods: First, an amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was synthesized through Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization and post-modification, and self-assembled into mPEG-b-P(C7-co-CA) micelles in an aqueous solution. The physical properties of mPEG-b-P(C7-co-CA) micelles, such as critical micelle concentration (CMC), size, appearance, and Zeta potential were characterized. The CA release curve of mPEG-b-P(C7-co-CA) micelles at pH 7.4, 6.5 and 4.0 was studied by dialysis method, then the targeting ability of mPEG-b-P(C7-co-CA) micelles to osteosarcoma 143B cells in acidic environment (pH 6.5) was explored by cellular uptakeassay. The antitumor effect of mPEG-b-P(C7-co-CA) micelles on 143B cells in vitro was studied by MTT method, and the level of reactive oxygen species (ROS) in 143B cells after mPEG-b-P(C7-co-CA) micelles treatment was detected. Finally, the effects of mPEG-b-P(C7-co-CA) micelles on the apoptosis of 143B cells were detected by flow cytometry and TUNEL assay.Results: An amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was successfully synthesized and self-assembled into spheric micelles with a diameter of 227 nm. The CMC value of mPEG-b-P(C7-co-CA) micelles was 25.2 mg/L, and it showed a pH dependent release behavior of CA. mPEG-b-P(C7-co-CA) micelles can achieve chargeconversion from a neutral to a positive charge with decreasing pHs. This charge-conversion property allows mPEG-b-P(C7-co-CA) micelles to achieve 143B cell targeting at pH 6.5. In addition, mPEG-b-P(C7-co-CA) micelles present high antitumor efficacy and intracellular ROS generation at pH 6.5 which can induce 143B cell apoptosis.Discussion: mPEG-b-P(C7-co-CA) micelles can achieve osteosarcoma targeting effectively and enhance the anti-osteosarcoma effect of cinnamaldehyde in vitro. This research provides a promising drug delivery system for clinical application and tumor treatment

    Impacts of hurricanes on surface water flow within a wetland

    Get PDF
    s u m m a r y Between 2001 and 2005, seven category 3 or higher major hurricanes made landfall within the US. The hydrologic impacts of these distinct climatic phenomena frequently occurring in wetland watersheds, however, are not well understood. The focus of this study was to evaluate the impacts of hurricane wind and rainfall conditions on water velocity and water elevations within the study wetland, the Florida Everglades. Specifically water velocity data was measured near two tree islands (Gumbo Limbo (GL) and Satin Leaf (SL)) and wind speed, water elevation, and rainfall were obtained from nearby wind observation stations. During the direct impacts of the hurricanes (Hurricanes Katrina and Wilma), water speed, flow direction, and hydraulic gradients were altered, and the extent of variation was positively related to wind characteristics, with significant alterations in flow direction at depth during Hurricane Wilma due to higher wind speeds. After the direct impacts, the longer lasting effect of hurricanes (time scale of a few days) resulted in altered flow speeds that changed by 50% or less. These longer lasting changes in flow speeds may be due to the redistribution of emergent vegetation

    Resolving the genetic paradox of invasions: Preadapted genomes and postintroduction hybridization of bigheaded carps in the Mississippi River Basin

    Get PDF
    The genetic paradox of biological invasions is complex and multifaceted. In particular, the relative role of disparate propagule sources and genetic adaptation through postintroduction hybridization has remained largely unexplored. To add resolution to this paradox, we investigate the genetic architecture responsible for the invasion of two invasive Asian carp species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) (bigheaded carps) that experience extensive hybridization in the Mississippi River Basin (MRB). We sequenced the genomes of bighead and silver carps (~1.08G bp and ~1.15G bp, respectively) and their hybrids collected from the MRB. We found moderateā€toā€high heterozygosity in bighead (0.0021) and silver (0.0036) carps, detected significantly higher dN/dS ratios of singleā€copy orthologous genes in bigheaded carps versus 10 other species of fish, and identified genes in both species potentially associated with environmental adaptation and other invasionā€related traits. Additionally, we observed a high genomic similarity (96.3% in all syntenic blocks) between bighead and silver carps and over 90% embryonic viability in their experimentally induced hybrids. Our results suggest intrinsic genomic features of bigheaded carps, likely associated with life history traits that presumably evolved within their native ranges, might have facilitated their initial establishment of invasion, whereas ex-situ interspecific hybridization between the carps might have promoted their range expansion. This study reveals an alternative mechanism that could resolve one of the genetic paradoxes in biological invasions and provides invaluable genomic resources for applied research involving bigheaded carps

    An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration

    Get PDF
    Antibody-based cancer immune therapy has attracted lots of research interest in recent years; however, it is greatly limited by the easy distribution and burst release of antibodies. In addition, after the clearance of the tissue, healthy tissue regeneration is another challenge for cancer treatment. Herein, we have developed a specific immunological tissue engineering scaffold using the agonistic mouse anti-human CD40 antibody (CD40mAb) incorporated into poly(l-lactide) (PLLA) electrospun fibers through the dopamine (PDA) motif (PLLA-PDA-CD40mAb). CD40mAb is successfully incorporated onto the surface of the electrospun fibrous scaffold, which is proved by immunofluorescence staining, and the PLLA-PDA-CD40mAb scaffold has an anti-tumor effect by locally releasing CD40mAb. Therefore, this immunological electrospun scaffold has very good potential to be developed as a powerful tool for localized tumor treatment, and this is the first to be reported in this area

    Design of the ļ¬‚ame retardant form-stable composite phase change materials for battery thermal management system

    Get PDF
    Phase change materials have attracted significant attention owing to their promising applications in many aspects. However, it is seriously restricted by some drawbacks such as obvious leakage, relatively low thermal conductivity, and easily flame properties. Herein, a novel flame retardant form-stable composite phase change material (CPCM) with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide (PEG/ER/EG/MH/ZH) has been successfully prepared and utilized in the battery module. The addition of MH and ZH (MH:ZH = 1:2) as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer. Further, the EG (5%) can provide the graphitization degree of residual char which is beneļ¬cial to building a more protective barrier. This designation of CPCM can exhibit leakage-proof, high thermal conductivity (increasing 400%ā€“500%) and prominent flammable retardant performance. Especially at 3C discharge rate, the maximum temperature is controlled below 54.2 Ā°C and the temperature difference is maintained within 2.2 Ā°C in the battery module, which presents a superior thermal management effect. This work suggests an efļ¬cient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields
    • ā€¦
    corecore